[Thermodynamics Note] The First Law
- magfiber
- 4月5日
- 讀畢需時 2 分鐘
calorie: heat required to increase 1g water from 14.5°C to 15.5°C
1J = 0.239 calorie
First Law
dU = δq - δW
q: - heat flows out of a body (exothermic process)
+ heat flows into a body (endothermic process)
w: - work done on a body
+ work done by a body
"d": state function
"δ": not a state function
∫ dU = 0 -> a property of a state function
V = constant -> isochore, isometric processes -> △U = qv
P = constant -> isobaric processes -> △H = qp
T = constant -> isothermal processes -> △H = 0, △U = 0 (for ideal gas)
q = 0 -> adiabatic processes -> dU = - δW
enthalpy H = U + PV
Cv = (δq/dT)v = (dU/dT)v -> dU = Cv*dT
Cp = (δq/dT)p = (dH/dT)p -> dH = Cp*dT
(1.temperature change. 2.no phase change)
(processes not always V=constant or P=constant)
The difference between Cp and Cv:
Cp = (∂H/∂T)p = (∂U/∂T)p + P(∂V/∂T)p
Cv = (∂U/∂T)v
Cp - Cv = (∂U/∂T)p + P(∂V/∂T)p - (∂U/∂T)v
dU = (∂U/∂V)t * dV + (∂U/∂T)v * dT
(∂U/∂T)p = (∂U/∂V)t * (∂V/∂T)p + (∂U/∂T)v
Cp-Cv = (∂U/∂V)t(∂V/∂T)p + (∂U/∂T)v + P * (∂V/∂T)p - (∂U/∂T)v
= (∂V/∂T)p [P+(∂U/∂V)t]
P(∂V/∂T)p: work done by the system per degree rise in expanding against the constant external pressure P
for ideal gas: PV=RT Cp-Cv = P(∂V/∂T)p = P * (R/P) = R (for one mole)
(∂U/∂V)t(∂V/∂T)p: work done per degree rise in temperature in expanding against the internal cohesive forces
(∂U/∂V)t ideal gas: equal zero
liquids: very large
solids: very large
Reversible adiabatic processes
dU = - δW (∵ δq =0)
Cv * dT = - P * dV
one mole ideal gas
Cv * dT = - (RT * dV) / V
Cv * ln (T2/T1) = R * ln (V1/V2)
Let Cp/Cv = γ
Cp - Cv = R
(Cp/Cv) - 1 = R/Cv
γ - 1 = R/Cv
Cv ln (T2/T1) = R ln (V1/V2)
(T2/T1)^Cv = (V1/V2)^R
(T2/T1) = (V1/V2)^(R/Cv)
(T2/T1) = (V1/V2)^(γ - 1)
(P2V2/P1V1) = (T2/T1) = (V1/V2)^(γ - 1)
(P2/P1) = (V1/V2)^γ
P2V2^γ = P1V1^γ = PV^γ = constant
Reversible isothermal pressure or volume
dU = 0
δW = δq = P dV = RT/V dV
W = q = RT ln(V2/V1) = RT ln(P1/P2)
Comentários